M1.

	The	perimeter of R is the same as the perimeter of L	B1	[1]
M2.	(a)	$\pi \times 0.7$		
		or $2 \times \pi \times 0.35$ or 2.19	M1	
		[2.198, 2.2] <i>Accept 0.7 π</i>	A1	
	(b)	Consistent units seen or implied e.g. 1600 or [0.002 198, 0.002 2] seen	B1	
		their 1600 ÷ their [2.198, 2.2] oe		
			M1	
		727.()	A1	
		(2) Strand (i) Rounding down their answer	Q1ft	

Additional Guidance

 $160 \div 0.7\pi = 72.8$ so 72

B0M1A0Q1ft

[6]

PhysicsAndMathsTutor.com

[3]

M1dep

M1

	(Diameter or side of square =) $\sqrt{36}$ or 6 or (radius =) 3 6 × 6 (= 36)	М1
	$\pi \times 6$	
	or $2 \times \pi \times 3$	M1dep
	[18.8, 18.9] or 6 π Accept 19 with working shown	A1
	Additional Guidance Accept [3.14, 3.142] for π Ignore further working after 6 π , that is if they incorrectly work 6 π out award full marks Do not accept π 6 for the A mark 6 or 3 may be on diagram but must be correct, e.g. radius must be 3, not 6	
M4.		
	Alternative method 1 $2 \times \pi \times 40$	
	or [251.2, 251.5]	
	or 251	
	or 250	M1
	$(2\times\pi\times40+200)$	
	or [251.2, 251.5] + 200	

or 251 + 200

or 250 + 200

Distance \div 18 or Distance \div 30

25.(...) and yes

or 15.(...) and yes

Strand (iii) decision to match their answers

ft provided M1M0M1	Q1ft
Alternative method 2 $2 \times \pi \times 40$	
or [251.2, 251.5]	
or 251	
or 250	M1
$(2 \times \pi \times 40 + 200)$	
or [251.2, 251.5] + 200	
or 251 + 200	
or 250 + 200	M1dep
18 × 30 or 540	M1
[450, 451.5] and 540 and yes Strand (iii) decision to match their answers ft provided M1M0M1	Q1ft
Additional Guidance 100 + 100 + 40 + 40 = 280, 280 ÷ 18 = 15.()	M0M0M1Q0
$\pi \times 80 = 251.3, 251.3 \div 2 = 125.65$	M0
Distance means any number using addition of lengths given in the question	
e.g. (100 + 40), 250, 200, 100	

M5.12 ÷ 2 or 6

M1

[4]

	12 ÷ 4		
	or 6 ÷ 2		
	or 3		Midon
			Mildep
	$\pi \times 3 \times 3$		
		oe	M1dep
	0- 100.0.00	01 00	
	9π or [28.2, 28.	3] Of 28 $SC2$ for 26π or [112, 112, 2]	
		302 101 30/t 01 [113, 113.2]	A1
M6.	2 x a x 0 15 or 5	7.4 or 57.5(0)	
	2 × <i>n</i> × 9.15 01 5	oe	
			M1
	18.3 <i>π</i> ; or [57.46,	57.5]	
		Accept 57 if correct method seen	A1

Strand (ii) eg $14 \div 4$ is not a whole number 14 is not a multiple of 4 Because you need half centimetres Half the perimeter has to be even $14 \div 4 = 3.5$ $4 \times 3 = 12$ and $4 \times 4 = 16$ [4]

[2]

Additional Guidance

Because it wouldn't have the sides as a whole number	Q1
14 doesn't divide into a whole number	04
Not possible because all the sides must be equal	Qu
Nothing divides into 14 4 times (not true)	QU
Not possible to make 14 using the same number 4 times	Qu
14 ÷ 4 without an answer or correct comment	Qu
The grid is not big enough	Qu
The square would not have equal sides	Qu
	00

(b) Valid reason

Strand (ii)	
eg 12 is not a square number	
$\sqrt{12}$ is not a whole number	
$3 \times 3 = 9$ and $4 \times 4 = 16$	
$\sqrt{12} = 3.4$ or 3.5	
	Q1

Additional Guidance

No number multiplied by itself equals 12	
No whole number multiplied by itself equals 12	QI
If it was a square it would have to be an area of 16 (not true)	Q1
The length and width would not match each other	Q0
	Q0

It wouldn't have equal sides

Q0 The base can't be timesed by the height to give 12 because the sides need to be equal Q0

Because 12 as an area would mean sides would be different lengths which would make the shape a rectangle not a square

(c) Correct shape drawn

Shape shown may be reflected or rotated

B1 for a Pentomino with no lines of symmetry and no rotational symmetryB1 for any polyomino with no lines of symmetry and rotational symmetry of order 2

B2

Additional Guidance

CANDIDATES MUST USE A DIFFERENT SHAPE TO THOSE GIVEN TO SCORE ANY MARKS

Accept any rotation or reflection of shape shown in mark scheme

If candidates do more than one, mark all and award the lowest mark

M8.(a)3a + 5b + 3a + 5b
oeMI6a + 10b or 2(3a + 5b)
oe do not ignore fw for final markA1**Additional Guidance**A1 $3a + 5b \times 2 = 6a + 10b$ (recovered)M1A1 $3a + 5b \times 2$ M1A0(3a + 5b)2M1A0

6 <i>a</i> 10 <i>b</i>	M1A0
$3a \times 2 + 5b \times 2$	M1A0
$3a \times 25b \times 2$	MOAO

(b) 15*ab*

B1 for $3a \times 5b$	
B1 for partially simplified answer	
B1 for $15 \times ab$	
	B2

Additional Guidance

Penalise further working, e.g. $3a \times 5b = 15ab = 3(5ab)$ gets B1

15 <i>ba</i>	
A = 15 <i>ab</i>	B2
A(15 <i>ab</i>)	B2
$15ab \text{ cm}^2$	B2
$A(3a \times 5b)$	B2
(3a)(5b)	B1
3a5h	B1
15(<i>a</i> b)	B1
2(5ab)	B1
3(5 <i>ab</i>)	B1
<i>ab</i> 15	B1
(15 <i>ab</i>) ²	
$15ab^2$	B0
$(3a \times 5b)^2$	B0
$3a \times 5b^2$	B0
	BO

(c) 315 ÷ 15	or 21 seen	M1	
7 and 3 in	any order SC1 for 15 and 21 or 9 and 35	A1	
Additiona	al Guidance		
1 and 21 o	on the answer line	M1A0	[6]
M9. <i>π</i> × 6 × 6 ÷ 2	oe accept a numerical value for π	М1	
18 π or a nume	rical value		
[55.8, 56.57]	Accept $\pi \times 18$ or $\pi 18$	A1	[2]
M10. <i>x</i> + <i>x</i> + 3 + <i>x</i> + <i>x</i>	+ 3 (=37) oe $(2x + 3) \times 2$ condone missing brackets 37 - 6	M1	

4x + 6 = 37

or 4x = 37 - 6

oe

		$\frac{37-6}{4}$	M1dep	
	(<i>x</i> =)	7.75 oe	A1	[3]
M11.	(a)	$\frac{1}{2} \times (40 + 24) \times 16$ oe	M1	
		512	A1	
	(0)	$\pi \times 4 \times 4$ oe [50.2, 50.3] or 16π	M1 A1	
	(c)	<u>their [50.2,50.3]</u> their 512 (= [0.098, 0.0982422])		
		[9.8, 9.82422] ft their 512 and their [50.2, 50.3] Allow 10 with correct method seen SC1 [90.18, 90.2]	M1 A1ft	
				[6]

M12.3x or 2x seen for missing sides

May be on diagram or in working	B1	
4x + 4x + 2x + 3x + 2x + x (= 56) oe 16x implies B1M1	M1	
their $16x = 56$	M1	
3.5 or $\frac{7}{2}$ or $3\frac{1}{2}$ $SC2 \text{ for } \frac{56}{11}$ or 5.09 or 5.1 $SC2 \text{ for } \frac{56}{13}$ or 4.3 SC2 for 4 SC applies if method marks not awarded.	A1ft	[4]
M13. 2 × π × 4.2 or 2 × 3.14() × 4.2	M1	
[26.3, 26.4]	A1	
26.4 ft their 2 d.p. or more answer SC1 for 55.4	B1ft	[3]

1

M14. $\pi \times 3.5 \times 3.5$ or 3.14 ... $\times 3.5 \times 3.5$ oe

or $\pi \times 3.5^{2}$ or $3.14 \dots \times 3.5^{2}$

38.4(8...) or 38.4(6...)
$$\frac{49}{4\pi}$$
 or 12.25 π or 12.3 π

38.5

ft their answer of 2 d.p. or more

B1 ft [3]

M1

A1

M15. Any side chosen for square and squared, eg $10^2 = 100$

M2 is for both square and circle areas attempted with correct numerical values (eg if 10 chosen for side of square, then 5 must be used as radius of circle, or if 4 chosen as radius then 8 used as side of square)

M1 if both square and circle area attempted with one incorrect numerical value (eg if 10 chosen for side of square, then 10 used as radius of circle, or if 4 chosen as radius then 4 used as side of square)

Half the side squared and multiplied by π , eg $\pi \times 25$

 π must be [3.1, 3.142] or $\overline{7}$

M2 is for both square and circle areas attempted with correct numerical values (eg if 10 chosen for side of square, then 5 must be used as radius of circle, or if 4 chosen as radius then 8 used as side of square)

M1 if both square and circle area attempted with one incorrect numerical value (eg if 10 chosen for side of square, then 10 used as radius of circle, or if 4 chosen as radius then 4 used as side of square)

M2

Work out 75% of their square and a correct calculation of the circle area, **or** works out what percentage the circle area is of the square area

This can be awarded even if only M1 awarded. Allow π used if a clear comparison, eg $\pi \times 25 > 3 \times 25$

A1

A method mark gained and correct conclusion based on 75% of their square with their circle

Strand (ii). Do not award if their circle area > square area, eg 78.5 > 25

Q1

Alternative Method

2r length of side of square giving $4r^2$ as area

M2 is for both square and circle area attempted with correct

numerical values (eg if r chosen for side of square, then $\frac{1}{2}$ must

be used as radius of circle, or if r chosen as radius then 2r used as side of square)

M1 if both square and circle area attempted with one incorrect numerical value (eg if x chosen for side of square, then x used as radius of circle, or if x chosen as radius then x used as side of square)

r as radius of circle giving πr^2 as area of circle

M2 is for both square and circle area attempted with correct

numerical values (eg if r chosen for side of square, then $\overline{2}$ must

be used as radius of circle, or if r chosen as radius then 2r used as side of square)

M1 if both square and circle area attempted with one incorrect numerical value (eg if x chosen for side of square, then x used as radius of circle, or if x chosen as radius then x used as side of square)

M2

75% of their square (= $3r^2$) and correct expression for area of circle with their chosen radius

A1

A method mark gained and correct conclusion based on 75% of their square with

their circle. eg $\pi > 3$ Strand (ii). Do not award if their circle area >square area, eg $\pi r^2 > r^2$

[4]

Q1