M1.
The perimeter of R is the same as the perimeter of L
B1

M2.
(a) $\pi \times 0.7$
or $2 \times \pi \times 0.35$
or 2.19
[2.198, 2.2]
Accept 0.7π
(b) Consistent units seen or implied
e.g. 1600 or [0.002 198, 0.002 2] seen

B1
their $1600 \div$ their [2.198, 2.2]
oe
Units need not be consistent
727.(...)

727
Strand (i) Rounding down their answer
Q1ft

Additional Guidance

$$
160 \div 0.7 \pi=72.8 \text { so } 72
$$

M3.
(Diameter or side of square $=$) $\sqrt{36}$ or 6 or (radius $=$) 3

$$
6 \times 6(=36)
$$

$\pi \times 6$
or $2 \times \pi \times 3$
[18.8, 18.9] or 6π Accept 19 with working shown

Additional Guidance

Accept [3.14, 3.142] for π
Ignore further working after 6π, that is if they incorrectly work 6π out award full marks
Do not accept $\pi 6$ for the A mark
6 or 3 may be on diagram but must be correct, e.g. radius must be 3 , not 6

M4.

Alternative method 1

$2 \times \pi \times 40$
or [251.2, 251.5]
or 251
or 250
$(2 \times \pi \times 40+200)$
or [251.2, 251.5] + 200
or $251+200$
or $250+200$

Distance $\div 18$ or Distance $\div 30$
25.(...) and yes
or 15.(...) and yes
Strand (iii) decision to match their answers

ft provided M1M0M1

Alternative method 2
$2 \times \pi \times 40$
or [251.2, 251.5]
or 251
or 250M1$(2 \times \pi \times 40+200)$
or [251.2, 251.5] + 200
or $251+200$
or $250+200$M1dep
18×30 or 540M1
[450, 451.5] and 540 and yesStrand (iii) decision to match their answersft provided M1M0M1
Q1ft
Additional Guidance
$100+100+40+40=280,280 \div 18=15 .(\ldots)$
M0M0M1Q0
$\pi \times 80=251.3, \quad 251.3 \div 2=125.65$

Distance means any number using addition of lengths given in the question e.g. $(100+40), 250,200,100$

$$
\begin{aligned}
& 12 \div 4 \\
& \text { or } 6 \div 2 \\
& \text { or } 3
\end{aligned}
$$

$$
\pi \times 3 \times 3
$$

oe
9π or [28.2, 28.3] or 28
SC2 for 36π or $[113,113.2]$

M6.
$2 \times \pi \times 9.15$ or 57.4 or $57.5(0)$
oe
18.3π; or $[57.46,57.5]$
Accept 57 if correct method seen

M7.(a) Valid reason

> Strand (ii)
> eg $14 \div 4$ is not a whole number
> 14 is not a multiple of 4
> Because you need half centimetres
> Half the perimeter has to be even
> $14 \div 4=3.5$
> $4 \times 3=12$ and $4 \times 4=16$
Additional Guidance
Because it wouldn't have the sides as a whole numberQ1
14 doesn't divide into a whole number Q0
Not possible because all the sides must be equal Q0
Nothing divides into 144 times (not true) Q0
Not possible to make 14 using the same number 4 times Q0
$14 \div 4$ without an answer or correct comment Q0
The grid is not big enough Q0
The square would not have equal sides Q0
(b) Valid reason
Strand (ii)
eg 12 is not a square number$\sqrt{12}$ is not a whole number

$$
3 \times 3=9 \text { and } 4 \times 4=16
$$

$$
\sqrt{12}=3.4 \ldots \text { or } 3.5
$$

Additional Guidance

No number multiplied by itself equals 12
No whole number multiplied by itself equals 12
Q1
If it was a square it would have to be an area of 16 (not true) Q0
The length and width would not match each other Q0
It wouldn't have equal sidesQ0The base can't be timesed by the height to give 12 because the sides need tobe equalQ0Because 12 as an area would mean sides would be different lengths whichwould make the shape a rectangle not a square
(c) Correct shape drawn

Shape shown may be reflected or rotated
B1 for a Pentomino with no lines of symmetry and no rotational symmetry
B1 for any polyomino with no lines of symmetry and rotational symmetry of order 2

Additional Guidance

CANDIDATES MUST USE A DIFFERENT SHAPE TO THOSE GIVEN TO SCORE ANY MARKS

Accept any rotation or reflection of shape shown in mark scheme
If candidates do more than one, mark all and award the lowest mark

M8.(a) $\quad 3 a+5 b+3 a+5 b$
oe
$6 a+10 b$ or $2(3 a+5 b)$
oe do not ignore fw for final mark

Additional Guidance

$3 a+5 b \times 2=6 a+10 b$ (recovered)
$3 a+5 b \times 2$
$(3 a+5 b) 2$
$6 a 10 b$
$3 a \times 2+5 b \times 2$
$3 a \times 25 b \times 2$
(b) $15 a b$
$B 1$ for $3 a \times 5 b$
B1 for partially simplified answer
B1 for $15 \times a b$

Additional Guidance

Penalise further working, e.g. $3 a \times 5 b=15 a b=3(5 a b)$ gets B1 $15 b a$

$A=15 a b$

A(15ab)
$15 a b \mathrm{~cm}^{2}$
A($3 a \times 5 b$)
(3a)(5b)
$3 a 5 b$
B1
B1
15(ab)
3(5ab)
$a b 15$
$(15 a b)^{2}$
B0
$15 a b^{2}$
$(3 a \times 5 b)^{2}$
$3 a \times 5 b^{2}$
(c) $315 \div 15$ or 21 seen

7 and 3 in any order
SC1 for 15 and 21
or 9 and 35

Additional Guidance

1 and 21 on the answer line

M9. $\pi \times 6 \times 6 \div 2$
oe accept a numerical value for π
18π or a numerical value
[55.8, 56.57]

$$
\text { Accept } \pi \times 18 \text { or } \pi 18
$$

M10. $x+x+3+x+x+3(=37)$ oe
$(2 x+3) \times 2$ condone missing brackets 37-6
$4 x+6=37$
or $4 x=37-6$

$$
\frac{37-6}{4}
$$

$$
(x=) 7.75 \text { oe }
$$

M11.
(a) $\frac{1}{2} \times(40+24) \times 16$
oe

512
(b) $\pi \times 4 \times 4$
oe
[50.2, 50.3] or 16π
(c) $\frac{\text { their }[50.2,50.3]}{\text { their } 512}$

$$
(=[0.098,0.0982422])
$$

[9.8, 9.82422]
ft their 512 and their [50.2, 50.3]
Allow 10 with correct method seen SC1 [90.18, 90.2]

M12.3x or $2 x$ seen for missing sides

May be on diagram or in working
$4 x+4 x+2 x+3 x+2 x+x(=56) o e$
16x implies B1M1
their $16 x=56$
3.5 or $\frac{7}{2}$ or $3 \frac{1}{2}$

SC2 for ${ }^{\frac{56}{11}}$ or $5.09 \ldots$ or 5.1
SC2 for $\frac{56}{13}$ or $4.3 \ldots$
SC2 for 4
SC applies if method marks not awarded.

M13.2 $\times \pi \times 4.2$ or $2 \times 3.14(\ldots) \times 4.2$
[26.3, 26.4]
26.4
ft their 2 d.p. or more answer SC1 for 55.4

```
M14. \(\pi \times 3.5 \times 3.5\) or \(3.14 \ldots \times 3.5 \times 3.5\) oe
    or \(\pi \times 3.5^{2}\) or \(3.14 \ldots \times 3.5^{2}\)
```

$38.4(8 \ldots)$ or $38.4(6 \ldots)$

$$
\frac{49}{4} \pi \text { or } 12.25 \pi \text { or } 12.3 \pi
$$

38.5

$$
\text { ft their answer of } 2 \text { d.p. or more }
$$

M15.Any side chosen for square and squared, eg $10^{2}=100$
M2 is for both square and circle areas attempted with correct numerical values (eg if 10 chosen for side of square, then 5 must be used as radius of circle, or if 4 chosen as radius then 8 used as side of square)
M1 if both square and circle area attempted with one incorrect numerical value (eg if 10 chosen for side of square, then 10 used as radius of circle, or if 4 chosen as radius then 4 used as side of square)

Half the side squared and multiplied by π, eg $\pi \times 25$
π must be [3.1, 3.142] or $\frac{22}{7}$
M2 is for both square and circle areas attempted with correct numerical values (eg if 10 chosen for side of square, then 5 must be used as radius of circle, or if 4 chosen as radius then 8 used as side of square)
M1 if both square and circle area attempted with one incorrect numerical value (eg if 10 chosen for side of square, then 10 used as radius of circle, or if 4 chosen as radius then 4 used as side of square)

Work out 75% of their square and a correct calculation of the circle area, or works out what percentage the circle area is of the square area

This can be awarded even if only M1 awarded.
Allow π used if a clear comparison, eg $\pi \times 25>3 \times 25$

A method mark gained and correct conclusion based on 75% of their square with their circle

Strand (ii).
Do not award if their circle area > square area, eg $78.5>25$

Alternative Method

$2 r$ length of side of square giving $4 r^{2}$ as area
M2 is for both square and circle area attempted with correct
numerical values (eg if r chosen for side of square, then $\frac{r}{2}$ must
be used as radius of circle, or if r chosen as radius then $2 r$ used as side of square)
M1 if both square and circle area attempted with one incorrect numerical value (eg if x chosen for side of square, then x used as radius of circle, or if x chosen as radius then x used as side of square)
r as radius of circle giving πr^{2} as area of circle
M2 is for both square and circle area attempted with correct
numerical values (eg if r chosen for side of square, then $\frac{r}{2}$ must
be used as radius of circle, or if r chosen as radius then $2 r$ used as side of square)
M1 if both square and circle area attempted with one incorrect numerical value (eg if x chosen for side of square, then x used as radius of circle, or if x chosen as radius then x used as side of square)
75% of their square ($=3 r^{2}$) and correct expression for area of circle with their chosen radius

A method mark gained and correct conclusion based on 75% of their square with
their circle. eg $\pi>3$
Strand (ii). Do not award if their circle area >square area, eg $\pi r^{2}>r^{2}$

